Refine Your Search

Topic

Search Results

Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Journal Article

A Comprehensive Rule-Based Control Strategy for Automated Lane Centering System

2022-04-18
Abstract To address the comfort and safety concerns related to driving vehicles, the Advanced Driver Assistance System (ADAS) is gaining huge popularity. The general architecture of autonomous vehicles includes perception, planning, control, and actuation. This article aims mainly at the controls aspect of one of the emerging ADAS features Lane Centering System (LCS). Limitations in deploying this feature from a controls point of view include maintaining the lane center with winding curvatures, dealing with the dynamic environment, optimizing controls where the perception of lane boundaries is erroneous, and, finally, concurring with the driver’s preferences. Although some research is available on LCS controls, most works are related only to the lateral controls by actuating steering. To increase the robustness, a comprehensive control strategy that involves lateral control, as well as longitudinal control along with a novel strategy to select the mode of driving, is proposed.
Journal Article

A Comprehensive Study of Vibration Suppression and Optimization of an Electric Power Steering System

2021-02-11
Abstract Electric power steering (EPS) systems have become the most advantageous steering system used in vehicles. They provide better fuel efficiency and a more compact design over traditional hydraulic power steering (HPS) systems. However, EPS systems are afflicted with unwanted noise and vibration that can undermine the safety of drivers. This article presents a mathematical framework for vibration analysis in a column-type EPS system. The steering column is modeled as a continuous clamped column. The equations of motion are derived using Hamilton’s principle, and explicit expressions are presented for the frequency and transmissibility equations. A three-degrees-of-freedom (3-DOF) dynamic model is also presented by an approximation of the stiffness, damping, and mass of the steering column. The results of the proposed analytical models are validated using ANSYS simulation.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

A Coupling Architecture for Remotely Validating Powertrain Assemblies

2023-03-15
Abstract Among the myriad of potential hybrid powertrain architectures, selecting the optimal for an application is a daunting task. Whenever available, computer models greatly assist in it. However, some aspects, such as pollutant emissions, are difficult to model, leaving no other option than to test. Validating plausible options before building the powertrain prototype has the potential of accelerating the vehicle development even more, doing so without shipping components around the world. This work concerns the design of a system to virtually couple—that is, avoiding physical contact—geographically distant test rigs in order to evaluate the components of a powertrain. In the past, methods have been attempted, either with or without assistance of mathematical models of the coupled components (observers). Existing methods are accurate only when the dynamics of the systems to couple are slow in relation to the communication delay.
Journal Article

A Coupling Capacitor Double-Resonance Topology for Electric-Field Coupled Power Transfer System Using Vehicle Tire

2021-11-03
Abstract The electric-field coupled power transfer (ECPT) system with a coupling capacitor double-resonance circuit is proposed for electric vehicle (EV) charging. The article analyzes the plate capacitors between the EV and ground copperplate and introduces the coupling capacitor double-resonance circuit. The two-port network impedance matching of two topologies coupling capacitor double resonance is simulated, and then double side L impedance matching network and coupling capacitor double resonance with Series-Series (S-S) topology are proposed to solve the transmission efficiency decrease led by plate capacitances’ fluctuation. A prototype of the ECPT system is designed and built to prove the validity of the proposed methods. It is shown that the ECPT system realized higher than 60 W of electrical power, which is dynamic wireless transferred through the tire steel belt and the ground copperplate with at least 88% efficiency when the tires are rolling.
Journal Article

A Data-Driven Greenhouse Gas Emission Rate Analysis for Vehicle Comparisons

2022-04-13
Abstract The technology focus in the automotive sector has moved toward battery electric vehicles (BEVs) over the last few years. This shift has been ascribed to the importance of reducing greenhouse gas (GHG) emissions from transportation to mitigate the effects of climate change. In Europe, countries are proposing future bans on vehicles with internal combustion engines (ICEs), and individual United States (U.S.) states have followed suit. An important component of these complex decisions is the electricity generation GHG emission rates both for current electric grids and future electric grids. In this work we use 2019 U.S. electricity grid data to calculate the geographically and temporally resolved marginal emission rates that capture the real-world carbon emissions associated with present-day utilization of the U.S. grid for electric vehicle (EV) charging or any other electricity need.
Journal Article

A Decentralized Multi-agent Energy Management Strategy Based on a Look-Ahead Reinforcement Learning Approach

2021-11-05
Abstract An energy management strategy (EMS) has an essential role in ameliorating the efficiency and lifetime of the powertrain components in a hybrid fuel cell vehicle (HFCV). The EMS of intelligent HFCVs is equipped with advanced data-driven techniques to efficiently distribute the power flow among the power sources, which have heterogeneous energetic characteristics. Decentralized EMSs provide higher modularity (plug and play) and reliability compared to the centralized data-driven strategies. Modularity is the specification that promotes the discovery of new components in a powertrain system without the need for reconfiguration. Hence, this article puts forward a decentralized reinforcement learning (Dec-RL) framework for designing an EMS in a heavy-duty HFCV. The studied powertrain is composed of two parallel fuel cell systems (FCSs) and a battery pack.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

A Direct Yaw-Moment Control Logic for an Electric 2WD Formula SAE Using an Error-Cube Proportional Derivative Controller

2020-07-26
Abstract A Direct Yaw-Moment Control (DYC) logic for a rear-wheel-drive electric-powered vehicle is proposed. The vehicle is a Formula SAE (FSAE) type race car, with two electric motors powering each rear wheel. Vehicle baseline balance is neutral at low speeds, for increased maneuverability, and increases understeering at high speeds (due to the aerodynamic configuration) for stability. A controller that can deal with these yaw response variations, modelling uncertainties, and vehicle nonlinear behavior at limit handling is proposed. A two-level control strategy is considered. For the upper level, yaw rate and sideslip angle are considered as feedback control variables and a cubic-error Proportional Derivative (PD) controller is proposed for the feedback control. For the lower level, a traction control algorithm is used, together with the yaw moment requirement, for torque allocation.
Journal Article

A Distributed “Black Box” Audit Trail Design Specification for Connected and Automated Vehicle Data and Software Assurance

2020-10-14
Abstract Automotive software is increasingly complex and critical to safe vehicle operation, and related embedded systems must remain up to date to ensure long-term system performance. Update mechanisms and data modification tools introduce opportunities for malicious actors to compromise these cyber-physical systems, and for trusted actors to mistakenly install incompatible software versions. A distributed and stratified “black box” audit trail for automotive software and data provenance is proposed to assure users, service providers, and original equipment manufacturers (OEMs) of vehicular software integrity and reliability. The proposed black box architecture is both layered and diffuse, employing distributed hash tables (DHT), a parity system and a public blockchain to provide high resilience, assurance, scalability, and efficiency for automotive and other high-assurance systems.
Journal Article

A Dynamic Method to Analyze Cold-Start First Cycles Engine-Out Emissions at Elevated Cranking Speed Conditions of a Hybrid Electric Vehicle Including a Gasoline Direct Injection Engine

2022-02-11
Abstract The cold crank-start stage, including the first three engine cycles, is responsible for a significant amount of the cold-start phase emissions in a Gasoline Direct Injection (GDI) engine. The engine crank-start is highly transient due to substantial engine speed changes, Manifold Absolute Pressure (MAP) dynamics, and in-cylinder temperatures. Combustion characteristics change depending on control inputs variations, including throttle angle and spark timing. Fuel injection strategy, timing, and vaporization dynamics are other parameters causing cold-start first cycles analysis to be more complex. Hybrid Electric Vehicles (HEVs) provide elevated cranking speed, enabling technologies such as cam phasing to adjust the valve timing and throttling, and increased fuel injection pressure from the first firings.
Journal Article

A Fast Permanent Magnet Width Determination Method for Multiple-Layer Flux-Barrier Permanent Magnet-Assisted Reluctance Machines

2021-06-14
Abstract In order to maximize the reluctance torque component, multiple-layer flux barriers are usually employed in permanent magnet-assisted synchronous reluctance (PMAREL) motors. However, the permanent magnet (PM) dimension of each layer should be carefully designed to achieve the best performance with the minimum PM material. This article investigates this issue and proposes a method to define the PM width according to the sinusoidal no-load airgap flux density distribution. First, the accuracy of the no-load magnetic circuit for airgap flux density calculation is verified with finite element analysis (FEA), considering single or multiple flux-barriers per pole. The effects of the location, width, and thickness of the PM are investigated separately. Then the PM width is derived by the equations developed from the no-load magnetic circuit. The proposed method reduces both the PM mass and the torque ripple.
Journal Article

A Formally Verified Fail-Operational Safety Concept for Automated Driving

2022-01-17
Abstract Modern Automated Driving (AD) systems rely on safety measures to handle faults and to bring the vehicle to a safe state. To eradicate lethal road accidents, car manufacturers are constantly introducing new perception as well as control systems. Contemporary automotive design and safety engineering best practices are suitable for analyzing system components in isolation, whereas today’s highly complex and interdependent AD systems require a novel approach to ensure resilience to multiple-point failures. We present a holistic and cost-effective safety concept unifying advanced safety measures for handling multiple-point faults. Our proposed approach enables designers to focus on more pressing issues such as handling fault-free hazardous behavior associated with system performance limitations. To verify our approach, we developed an executable model of the safety concept in the formal specification language mCRL2.
Journal Article

A Framework for Characterizing the Initial Thermal Conditions of Light-Duty Vehicles in Response to Representative Utilization Patterns, Ambient Conditions, and Vehicle Technologies

2021-04-07
Abstract It is widely understood that the thermal state of a light-duty vehicle at the beginning of a trip influences the vehicle performance throughout the drive cycle. Cold starts, or initial states with component temperatures near ambient conditions, are strongly correlated with reduced vehicle performance and energy efficiency and increased emissions. Despite this understanding, there is little literature available that characterizes initial thermal states beyond empirical studies and simplified analyses of dwell times. We introduce a framework that considers vehicle activity patterns, including the previous drive event, duration of the previous dwell event, and relevant ambient conditions occurring during these events. Moreover, the framework allows for technologies to influence the prominence of cold starts and warm starts.
Journal Article

A Fundamental Analysis for Steady-State Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2022-03-18
Abstract Linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative energy conversion device with the ability of converting mechanical energy into electrical energy, which allows it to be a range extender for hybrid vehicles. This article presents a fundamental analysis for the steady-state operation of the LICELGIS, concentrating on electromagnetic force and motion characteristics. Simple assumptions are made to represent ideal gases instantaneous heat release and rejection. Based on assumptions, sensitivity analysis is carried out for key factors of electromagnetic force. The theoretical velocity model in mathematics is derived from analyzing the LICELGIS theory model. It shows that fuel injection quantity and stroke length are the most sensitive factors in key parameters. The piston velocity around the top dead center (TDC) changes greater than that at any other position, which is caused by the combustion process.
Journal Article

A Global Sensitivity Analysis Approach for Engine Friction Modeling

2019-08-21
Abstract Mechanical friction simulations offer a valuable tool in the development of internal combustion engines for the evaluation of optimization studies in terms of time efficiency. However, system modeling and evaluation of model performance may be highly complex. A high number of interacting submodels and parameters as well as a limited model transparency contribute to uncertainties in the modeling process. In particular, model calibration and validation are complicated by the unknown effect of parameters on the model output. This article presents an advanced and model-independent methodology for identifying sensitive parameters of engine friction. This allows the user to investigate an unlimited number of parameters of a model whose structure and properties are prior unknown.
Journal Article

A Global Survey of Standardization and Industry Practices of Automotive Cybersecurity Validation and Verification Testing Processes and Tools

2023-11-16
Abstract The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and Cybersecurity Management System (UN R155) mandates the development of cybersecurity management systems (CSMS) as part of a vehicle’s lifecycle. An inherent component of the CSMS is cybersecurity risk management and assessment. Validation and verification testing is a key activity for measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval. Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk management to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for validation and verification testing.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
X